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ABSTRACT

In this paper, we present a novel object-based statistical

colocalization method. Our colocalization relies on multi-

ple hypothesis tests on the distances between all pairs of the

(spot-shaped) objects from the two markers. We wish to test

among all these pairs how many are significantly close to each

other such that they cannot occur just “by chance”. Two ob-

jects are decided to be colocalized if the test on their distance

is significant. For this purpose, we first extract the objects

by applying a wavelet-based spot detection approach which

fully takes into account the mixed-Poisson-Gaussian noise

process of confocal fluorescence images. Then, we build a

null hypothesis model in which the distribution of the dis-

tance between two independently randomly drawn detections

in the cell is estimated by a kernel method. The observed dis-

tances are tested against this null model. Our tests control the

false discovery rate (FDR) of the colocalizations. Simulations

show that this approach has a good specificity. Furthermore,

our method has been successfully applied in a real problem of

protein colocalization analysis during the endocytic process.

Index Terms— colocalization, false discovery rate, pro-

tein association

1. INTRODUCTION

Colocalization is widely considered as an important and use-

ful analysis in cell biology. For example, colocalization of a

protein with specific markers of cellular functional compart-

ments contributes to the understanding of the role of the pro-

tein in biological processes; colocalization between proteins

also has implications on their interactions. However, large

biological data sets usually prohibit manual analysis of colo-

calization, which is tedious and unreliable.

A range of computational colocalization approaches have

been proposed in the literature (see [1] for a comprehen-

sive review), which can be classified into 1) intensity-

correlation-based methods: In these methods, some cor-

relation score of the intensity values in a dual-channel image

is calculated (the two channels will be respectively denoted
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as IA and IB). A large score implies a high colocalization de-

gree between the two channels. Common scores include the

Pearson’s coefficient [2], Manders’ coefficient [3], cross cor-

relation [4], and Li’s coefficient [5]. Statistical validation was

also introduced in [2] through assessing the statistical signifi-

cance of the score by estimating its distribution from images

of randomly permuted pixel blocks. 2) object-based meth-

ods: Unlike intensity-correlation-based methods which rely

on some global image similarity measure and a pixel coinci-

dence analysis, in the object-based approaches, the structures

of interest in colocalization are explicitly explored. The ob-

jects are first segmented and identified, and the colocalization

events are established by using object information such as

their locations. For example, [6] considers a colocalization

of two objects if their centers are separated below the micro-

scope resolution. A similar method is studied by [7] termed

the “nearest-neighbor distance” approach. A statistical vali-

dation is also carried out by computing the significance of the

colocalizarion degree defined as the ratio of the number of

colocalized objects and the total object number in one chan-

nel. The distribution of the colocalization degree is estimated

from the degrees computed between the reference image crop

in IA and image crops in IB serving as randomized images.

This estimation is valid only if the object spatial distribution

in IB is homogeneous and inter-crop independent. Besides

this nearest-neighbor distance method, an overlap approach is

also introduced in [7]. A method combining the intensity- and

object-based approaches is proposed in [8], where a correla-

tion analysis is performed in the region of interest obtained

from Sobel pre-filtering. However, no statistical validation

was provided.

In this paper, we present a novel object-based statistical

colocalization method. Our biological application context is

as follows. We are interested in how an unknown protein

X is localized during the endocytic process. The protein X

shows vesicular staining in the image. Because such stain-

ing is reminiscent of proteins involved in intracellular traf-

ficking, we wished to determine if X could play a role in

endocytosis. For this purpose, 5 different proteins (P1, P2,

P3, P4, P5)1 were used as markers of cellular compartments

corresponding to different steps of the endocytic process. Co-

1The real protein names are masked due to confidential reasons.
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immunofluorescence labeling was performed between X and

each of the five proteins, with X labeled in IA, and endocytic

marker in IB .

Our colocalization relies on multiple hypothesis tests on

the distances between all pairs of the spots generated by the

two protein markers. Two spots are decided to be colocal-

ized if their distance is significantly small. For this purpose,

we first extract the spots by applying a wavelet-based spot

detection approach which fully takes into account the mixed-

Poisson-Gaussian noise process of confocal fluorescence im-

ages. Then, we build a null hypothesis model in which the

distribution of the distance between two independently ran-

domly drawn spots of the two proteins is estimated by a kernel

method. The observed distances are tested against this null

model. Our tests control the false discovery rate (FDR) of the

colocalizations. Simulations show that this approach has a

good specificity; in our biological application, the method de-

tects that X strongly colocalizes with one of the five proteins

during the endocytic process.

2. STATISTICAL COLOCALIZATION

Our colocalization procedure consists of three main steps, i.e.,

spot detection, determination of the cellular supports of the

proteins, and hypothesis tests, which are presented in the fol-

lowing sections.

2.1. Spot detection

In each image, the fluorescein-marked proteins (aggregates)

are present as a number of bright spots. Our first step aims

at localizing these protein spots. This is accomplished by ap-

plying the spot extractor proposed in [9]. The basic idea is

to reconstruct the image from the thresholded wavelet bands

such that the spots are denoised and enhanced. The wavelet

scaling (approximation) band is set to zero so that the smooth

background is not reconstructed. By introducing a multiscale

variance stabilizing transform (MS-VST) [9], the thresholds

in the wavelet domain detect significant wavelet coefficients

derived from the observed data which have a mixed-Poisson-

Gaussian (MPG) statistical nature. Indeed, our images are

from a confocal microscope, which are contaminated by both

photon noise (Poisson) and camera readout noise (Gaussian),

together forming an MPG process. The MS-VST allows us

to Gaussianize and stabilize the noise in the wavelet bands.

This indeed brings a complex MPG problem to the Gaussian

denoising case, which has been well studied.

The reconstructed image is then binarized by a thresh-

old T ≥ 0. In our case, T = 0, i.e., the positive part of

the image is retained and all negative pixels are set to zero.

Then, all connected components as putative bright spots are

extracted, and their intensity-weighted centers are computed.

Note that the estimated centers do not heavily depend on the

threshold T . In the ideal case of isolated isotropic spots,

their computed centers will be independent of T (unless a too

high T is used such that the spot is missed). Clearly, this

is not the case for some classical colocalization approaches

based on overlapping surface of the detected spots. Suppose

SA := {cA,i := (xA,i, yA,i, zA,i), 1 ≤ i ≤ NA} and SB :=
{cB,i := (xB,i, yB,i, zB,i), 1 ≤ i ≤ NB} to be respec-

tively NA and NB spot centers computed from IA and IB .

We further define the distance between each center cA,i and

each cB,j to be di,j := |cA,i − cB,j |. We have thus in to-

tal NA · NB distances (di,j)1≤i≤NA,1≤j≤NB
, which will be

hypothesis-tested. We intend to see how many distances are

significantly small such that they can not be observed just “by

chance”.

2.2. Cellular supports of the proteins

In order to test (di,j)i,j , we need to formulate our null hy-

pothesis H0 which is as follows: under the null, we suppose

that (di,j)i,j are observed from the object centers SA and SB

which are independently and uniformly randomly distributed

in the cellular supports of protein A (RA) and of protein B

(RB), respectively. These supports are cellular regions where

the proteins can be present (under H0). The probability dis-

tribution under H0, i.e., the density of the distance of two

random points, one in RA and the other in RB , is denoted as

p(d). To estimate p(d), we need to first estimate the supports

RA and RB .

As RA and RB are protein supports under H0, they can

not be estimated from the observed data as the proteins could

have undergone interactions (so would have been significantly

colocalized) such that their observed supports would differ

from those under H0 (i.e., when they can only be colocalized

by chance). For our study which is still preliminary, RA and

RB are assumed to be the cell support which is pre-segmented

by a biologist. In near future, we will use specific fluores-

cence markers to determine the regions (such as nuclei) where

the proteins are known to be absent from prior knowledge. In

this way, we will be able to refine our support estimations by

excluding these regions.

2.3. The hypothesis testing framework

The protein supports being determined, we are at the point

to estimate the distance distribution under H0. Toward this

purpose, we randomly draw a large number of uniformly dis-

tributed points in RA and RB , and compute their distances.

In our experiments, approximately 3 × 106 distances are

drawn. Then, we use the Gaussian kernel density estimator

[10] (Parzen window method) to derive the density p(log(d)).
Note that it is the density of log(d) which is actually esti-

mated. This is because a kernel estimator is known to be

inaccurate at the boundaries. As d is always nonnegative,

direct estimation of p(d) will have undesirable side-effects

around d = 0. A logarithmic transform does not modify the
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problem since the logarithmic function is monotone, and it

avoids the boundary instability of a kernel estimator.

Now, we can test the NA ·NB log-transformed observed

distances (log(di,j))i,j against H0. This should be done in

a multiple hypothesis testing framework in order to correct

multiple comparisons. For example, we may use the Bon-

ferroni over-conservative correction to control the probability

of erroneously rejecting even one of the true null hypotheses,

i.e., the Family-Wise Error Rate (FWER). Alternatively, one

can carry out the Benjamini and Hochberg procedure [11] to

control the False Discovery Rate (FDR), which is the average

fraction of false detections over the total number of detec-

tions, i.e.,

FDR := E[|FP|/(|FP|+ |TP|)]

Here |FP| and |TP| respectively stand for the number of false

positives and that of true positives. The control of FDR has

the following advantages over that of FWER: 1) it usually has

a greater detection power; 2) it can easily handle correlated

data [12]. The latter point is crucial for us because the NA ·
NB distances are dependent statistics. As a result, the FDR

test is applied in our problem.

Suppose that the FDR is controlled at level β, i.e., FDR ≤
β. This indicates that the true discovery rate (TDR)

TDR := E[|TP|/(|FP|+ |TP|)]

will be at least (1−β). Thus, supposing K hypotheses among

NA ·NB have been rejected (i.e., the K distances are judged

as significantly small), we will have at least K(1−β) correct

decisions on average. Thus, from this value, we can finally

calculate the colocalization ratio rc, which is the fraction be-

tween the number of colocalized pairs and the total number

of pairs, i.e., rc := K(1− β)/(NANB). The higher rc is, the

higher is the degree of colocalization between SA and SB .

3. RESULTS

3.1. Colocalization specificity

We first evaluate the specificity of the colocalization under

our null model. For this purpose, we simulated a cell volume

with a nucleus, both having ellipsoidal shapes (Fig. 1(a)). RA

and RB are both supposed to be the cellular region except for

the nucleus. Fig. 1(b) shows the density p(log(d)) estimated

from the distances of randomly drawn point-pairs in the pro-

tein supports (approximately 3 × 106 distances are drawn).

Furthermore, about 300 virtual center detections for each pro-

tein type are randomly generated in their support with a uni-

form spatial distribution (see Fig. 1(a), blue and red points are

respectively from protein A and B). Thus, in one simulation

we have in total approximately 105 distances to test. Our FDR

level is set to β = 0.5. Clearly, as the simulation follows the

scenario of our null model, any detected colocalization rep-

resents a false positive. We have carried out 10 replications
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Fig. 1. Colocalization specificity. (a) A cell volume with a nucleus,

both having ellipsoidal shapes, is simulated. Blue and red points are

virtual detections for protein A and B, respectively (NA ≈ NB ≈

300); (b) Estimated p(log(d)). With 10 simulations (each having

about 105 tests) and β set to 0.5, not a false positive was observed.

of the simulation and not a single colocalized pair (false pos-

itive) was observed. This shows that our method has a good

specificity.

3.2. Colocalization in real cells

In our application, we are interested in the colocalization of

the reference protein X with the 5 target proteins. Fig. 2(a)

and (b) show two confocal slices of a cell with markers for

X and for P1, respectively. The cell support is manually seg-

mented. The protein detections within the support are pre-

sented in Fig. 2(c) and (d). The colocalization procedure has

been carried for X and each of the target proteins on at least

5 cells. The average colocalization ratios for different pro-

teins are shown in Fig. 3. We can see that the target proteins

can be roughly classified into three families according to their

colocalization ratios (rc = mean ± standard deviation): (1)

P1 (rc = 10−3 ± 4.67 × 10−4), which exhibited the high-

est average colocalization ratio; (2) P2 (rc = 1.67 × 10−4 ±
7.19 × 10−5) and P3 (rc = 6.49 × 10−5 ± 9.15 × 10−5),

which had ratios much lower than P1 but much higher than

(3) P4 (rc = 1.29 × 10−5 ± 3.35 × 10−6) and P5 (rc =
4.78 × 10−6 ± 3.53 × 10−6), which presented very low de-

grees of colocalization.

4. CONCLUSION

In this paper, we have presented a novel statistical colocal-

ization approach where significantly colocalized spots are de-

tected by FDR tests on the distances between all spot pairs

from the two markers. This method has a good specificity

and has been successfully applied in a real study of protein

association. Our future work could involve the refinement of

the protein support estimation, more validations on real data,

and theoretic investigations such as point-process modeling

for colocalization.
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(a) (b)

(c) (d)

Fig. 2. Spot detection for protein X and P1 in a cell. (a) a slice of

the image of protein X; (b) a slice of the image of protein P1; (c)

detected spots (red) in (a) within the cell (blue); (d) detected spots

(red) in (b) within the cell (blue).
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Fig. 3. Colocalization ratios between the reference protein X and

the 5 different proteins (rc = mean ± standard deviation): P1 (rc =
10−3

±4.67×10−4), P2 (rc = 1.67×10−4
±7.19×10−5), P3 (rc =

6.49×10−5
±9.15×10−5), P4 (rc = 1.29×10−5

±3.35×10−6),

and P5 (rc = 4.78×10−6
±3.53×10−6). The FDR detection level

is set to β = 0.5.
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